Monday, 19 December 2022

Analysis of trusses by joint and section method


Analysis of trusses by joint and section method


Numerical problem on the truss Analysis by the method of joints

Analyse the given truss given below by using the method of joints


Step 1: Converting the supports into reactions as shown in the figure below
Step 2: Check for Determinacy
                           w.k.t.

                          m+r-2j=0
                           
                           
                           9+3-2(6) =0
                         
                           Therefore, the structure is determined.
                           
                            Where, 

                            m = The number of members in the structure
           
                            r =   Support Reactions
             
                            j =   Number of joints


Step 3: Calculation of support reactions
               
               Number of unknown reactions = 3 (.i.e. HA, VA & VD)

               Applying the equilibrium conditions

               ΣH = 0

                HA + 80 = 0 ……….. (1)

                Therefore, HA = -80 KN

                ΣV = 0

                VA + V= 50KN.............. (2)

               Taking moment about support D

               VA (3) – 50 (1) + 80 (0.75) = 0............. (3)

               Solving the above equation

               VA = - 3.33KN

               Substitute VA in Eq (2)

               Therefore, VD = 53.33 KN

 Step 4: Free body diagram representing the nature of forces



Step 5: Solving joint A


Applying horizontal equilibrium condition

ΣH = 0

-80 + FAE + FAB Cosϴ = 0

(ϴ = Tan-1(0.75/1))

(ϴ = 36.86o)

FAE + FAB Cos36.86 = 80……… (1)

ΣV = 0

-3.33 + FAB Sinϴ = 0

FAB Sin36.86 = 3.33

Therefore, FAB = 5.55 KN (Tensile)…… (2)

Substitute (2) in (1)

FAE = 75.56KN(Tensile)

Step 6: Solving joint B

Applying horizontal equilibrium condition

ΣH = 0

FBC - FAB Sinα = 0

FBC – 5.55Sin 53.13 = 0

FBC = 4.44 KN

ΣV = 0

-FBE – FAB Cosα = 0

-FBE – 5.55Cos 53.13 = 0

 FBE = -3.33KN

FBE = 3.33KN (Compression)

Step 7: Solving for joint E

ΣH = 0

- FAE + FEF + FEC Cosϴ = 0…… (1)

ΣV = 0

-FBE + FEC Sinϴ = 0

-3.33 + FEC Sin 36.86 = 0

FEC = 5.55KN (Tensile) ………. (2)

Substitute (2) in (1)

- FAE + FEF + FEC Cosϴ = 0

-75.56+ FEF +5.55Cos 36.86 = 0

Therefore, FEF = 71.12KN(Tensile)

Step 8: Solving for joint F


          ΣH = 0
          
          FEF = FFD
        
          FFD = 71.12KN (Tensile)
          
          ΣV = 0
          
          FFC = 50KN (Tensile)

Step 9: Solving for joint C


          ΣH = 0

         -FBCSinα +80 + FDC Sinα = 0

         -4.44Sin53.14 + 80 + FDC Sin53.14 = 0

          FDC = - 95.55KN

          FDC = 95.55KN (Compression)

                   Numerical problem on the truss Analysis by the method of Sections

                      Determine the forces in the member's BD, CD & CE

Step 1: Sectioning of a truss


Step 2: Check for Determinacy
          w.k.t.

    m+r-2j=0

. i.e., 7+3-2(5) =0
                                
Therefore, the structure is determined.

Where, 

m = The number of members in the structure
           
 r =   Support Reactions
             
j =   Number of joints

Step 3: Determination of support reactions

Applying the equilibrium conditions

ΣH = 0

Therefore, HE = 0……… (1)

ΣV = 0

VA + VE = 8000 N…….. (2)

Taking moments about E

VA (2) + 4000 (1) – 1000 (1.5) – 3000(0.5) = 0

Therefore, VA = 3500N

Substitute (2) in (1)

V= 4500N

Step 4: Determination of unknown forces


Taking moment about C

-VE (1) + 3000(0.5) – FDB (0.866) = 0

Solving the above equation,

FDB = -3464 N

FDB = 3464 N (Compressive)

Applying vertical equilibrium condition

ΣV = 0

-3000 - FDCSin60 + V= 0

Therefore, FDC = 1732.05N (Tensile)

Taking Moments about D

-V(0.5) +FCE (0.866) = 0

FCE = 2598N


Er. SP.ASWINPALANIAPPAN., M.E.,(Strut/.,)
Structural Engineer

No comments:

Post a Comment